Al tools for research

Dr. Thé Van Luong – Research service at UNIL Head of Al and IT systems for research the-van.luong@unil.ch

Overview: Usage of AI in research and publications

- Opportunities and challenges
- Institutional AI projects at UNIL

Al in everyday life

- Virtual assistants and chatbots: ChatGPT, Siri and Alexa
- Content creation and editing: images, videos and augmented reality
- Processing and conversion: transcription, image recognition and automatic translation
- **Recommendations**: analysis, behavior tracking, ads and entertainment
- Automation and smart devices: emails, calendars and smart homes
- Social, wellness and health: dating apps and medical assistants
- Navigation and mobility: GPS and autonomous vehicles
- **Security and finance**: fraud detection and budget management

DuckDuckGo Al Chat

Vos discussions sont privées et ne sont jamais enregistrées ni utilisées pour entraîner des modèles d'IA.

Essayez les logiciels open source Llama 3.1 et Mixtral récemment ajoutés

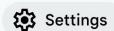
Discuter avec GPT-40

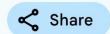
Bonjour Thé Van De quoi avez-vous besoin aujourd'hui?

Saisissez une requête ici

Chat with any PDF

Join millions of students, researchers and professionals to instantly answer questions and understand research with Al




Drop PDF here

Browse my Computer From URI

NotebookLM

Metaheuristics GPU

Sources (2)

Select all sources

What are the main contributions of these papers?

Here are the main contributions of the papers:

- The papers propose new guidelines for designing and implementing Local Search Metaheuristics (LSM) on Graphics Processing Units (GPUs). 1 2 The authors argue that GPUs offer significant computational power and memory bandwidth compared to traditional CPUs, making them well-suited for accelerating the search process of LSMs. 1 3
- The papers present three schemes for implementing Island Models (IMs) on GPUs: 2
 - o Parallel evaluation of the population on GPU: The CPU manages the sequential EA process for each island, and the GPU is used exclusively for parallel evaluation of solutions. This is the simplest approach but involves significant data transfers between the CPU and GPU. 4 5
 - o Fully distributed Island Model on GPU: The entire IM is parallelized on the GPU, with each island represented by a thread block. This minimizes data transfers but requires careful thread synchronization and memory management. 6 7

What are the three proposed schemes for implementing the Island Model on a GPU?

How does the use of shared

Close Chat

2 sources

Start typing...

* Notebook guide

■ NotebookLM

Sources ②

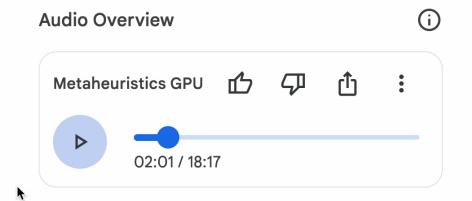
+

Select all sources

http://mistic.heig-vd....

http://mistic.heig-vd....

Metaheuristics GPU



* Notebook guide

Summary

Both sources detail research on accelerating local search metaheuristics and evolutionary algorithms using Graphics Processing Units (GPUs). The first paper focuses on a GPU-based island model for evolutionary algorithms, exploring different implementation schemes to optimize performance and addressing challenges like memory management and thread synchronization. The second paper presents a guideline for designing and implementing efficient local search metaheuristics on GPUs, optimizing data transfer, thread control, and memory management, and demonstrating significant speedups across various optimization problems. Both studies highlight the potential of GPU computing for significantly enhancing the speed and efficiency of solving complex optimization problems.

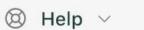
2 sources Start typing...

* Notebook guide

Find the best science, faster.

Ask the research...

Synthesize Copilot


Filter

Ask a research question

X List of concepts

Votre assistant IA quotidien

Établir une routine de travail quotidienne

Suggérer une routine de travail

Générer des idées

Répertorier des idées pour un événement de team building à

Explique-moi ça

Racontez-moi une devinette pour me faire rire

Message Copilot...

Cuisiner sans faire de courses

Explique-moi les supraconducteurs

Script Python pour du reporting

Anecdote sur l'Empire romain

Message ChatGPT

Demander un devis par e-mail

Routine matinale dynamique

Anecdote sur l'Empire romain

Quiz sur les civilisations antiques

Message ChatGPT

Al FAQ guidelines (1/2): academic usages

- Research and publications
 Information retrieval, (re)writing, summarizing documents, literature review, generating images, programming, data generation and analysis
- Writing and editing administrative documents Reports, emails, memos or funding request
- Educational material creation and course preparation
 Lecture notes, presentations, learning modules, quizzes (Wooclap) or case studies
- Completing assignments and academic tasks
 Essay writing, preparing presentations or creating course summaries
- Organization, planning and project management Task organization, timeline planning or resource management

Al FAQ guidelines (2/2): issues and risks

Ethical issues and pitfalls

- Plagiarism, intellectual property, data confidentiality, dependency risks, skill deterioration and energy consumption
- **Statistical generation text**: inaccuracies, context understanding, training bias, content integrity and source referencing
- Proliferation of low-quality articles, fake data, misinformation, and the risk of losing of over personal identity and content

Best practices

- Data protection: avoid confidential data, disable model training features in AI tools and ensure minimal anonymization of data
- Academic integrity: mention in documents when AI tools have been used
- **Responsability:** you have an expertise and a control on the output \mathcal{U}

Al initiatives (research + education)

- I. High-level, strategic and Direction support
 - Al institutional website: UNIL positioning + Al FAQ unil.ch/numerique
 - Al taskforce (advisory commission) + Al strategic unit
 - Survey campaign about AI usage from the UNIL community
 - Join the Swiss AI initiative (ETHZ and EPFL) and the Alps cluster (~10'000 GPUs)
 - Al blog to showcase the Al expertise at UNIL unil.ch/iaunil
 - Update of directives 0-3 Code of Ethics (and student form) and 6-9 Data Protection
- II. Support for researchers: resources, awareness-raising and training ressources
 - Awareness-raising and trainings (events and faculty seminars)
 - Tutorials and resources (padlets and guides)
 - Network animation: Group Teams Intelligence artificielle UNIL
 - Index card: 10 commandments of AI in research
 - Biannual forums on Al and research
- III. Development of AI pilot projects (IRIS, CompaSciences and UNIL model on documents)

Available AI tools at UNIL

https://copilot.microsoft.com

- You can log in with your UNIL email address!
- OpenAl models (paid version) with different training data and features
- Microsoft Copilot for universities offers additional data protection (not used for training) but data handling practices are unclear

https://corv.unil.ch

- Transcription tool based on local Whisper models and PyAnnote
- Executed locally on Ci DCSR infrastructures. Audio files are not saved
- Best-effort queue system where jobs are submitted and processed as resources allow
- UNIL VPN is required

Unil.

Lausanne University - Research service • 1m

AI tools for research (administration and developers)

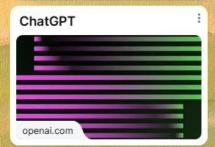
Service de la Recherche - UNIL - https://unil.ch/numerique

Multifunctional conversational assistants

Models Work

How AI works

WORKS

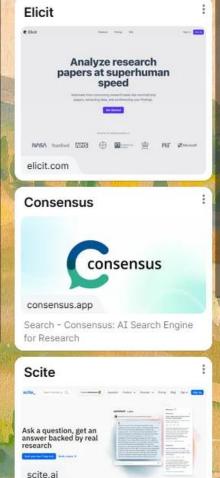

CHATBOTS

LARGE LANGUAGE

MODELS

YouTube

How Chatbots and Large Language


Document summarization

Sharly AI

Literature reviews and synthesis

AI for Research - scite.ai

Creating and modifying visual content

() searchity --- --- --- --- ---

....

Productivity, content and organization enhancers

Canva: Visual Suite for Everyone

Microsoft Designer - Stunning designs in a flash

Energy consumption, copyright and plagiarism (FR)

Recent study about energy consumption of tools

Light bulbs have energy ratings - why can't AI chatbots?

Measurements performed or popular open-source model

Interview du Professeur Philippe Gilliéron, professeur de droits à l'UNIL et avocat, par rap à l'utilisation des IA d'un point de vue juridique (10:05)

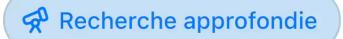
Resources and perspectives

Dr. Thé Van Luong – Research service at UNIL the-van.luong@unil.ch

Al tools: padlet.com/Al_research and copilot.microsoft.com (UNIL login)

AI on the horizon:

- Multimodal AI: speech, photos and video
- Reasoning models and agents (e.g. ChatGPT-o3, DeepSeek-R1, DeepResearch, Operator)



Comment puis-je vous aider?

I am writing a book chapter. I would like a literature review about all the works talking about the use of GPU computing in <u>metaheuristics</u> (genetic algorithms, local search, tabu search, ant colony and so on.).

Rechercher

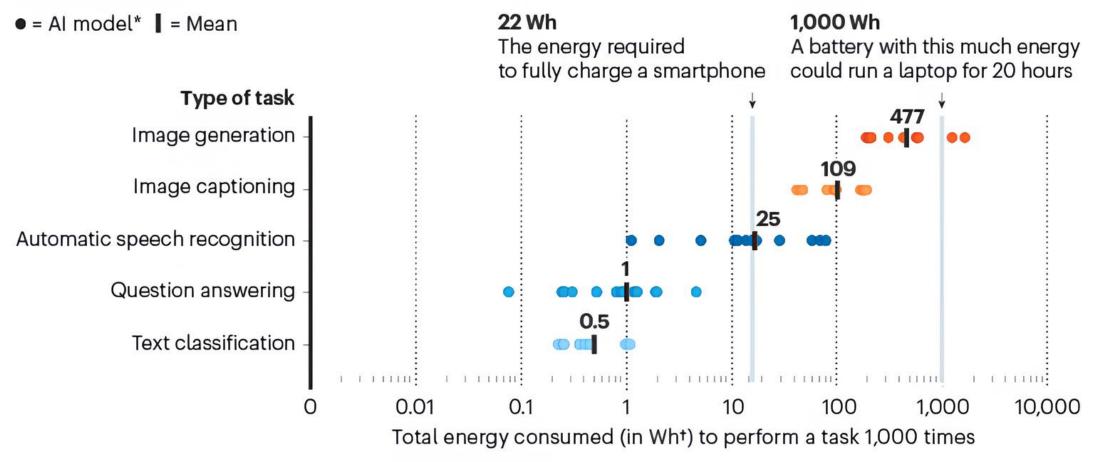
Résou Chat GP F p & des neuer et es . En visag & de la réfrir les informations en indeportantes s

Plus

Resources and perspectives

Dr. Thé Van Luong – Research service at UNIL the-van.luong@unil.ch

Al tools: padlet.com/Al_research


AI on the horizon:

- Multimodal AI: speech, photos and video
- Reasoning models and agents (e.g. ChatGPT-o3, DeepSeek-R1, DeepResearch, Operator)
- Al skills increasingly required in recruitment
- Al tools integrated into everyday social platforms
- On-device models (e.g. smartphones) for enhanced privacy and energy efficiency

Appendix

AI'S ENERGY FOOTPRINT

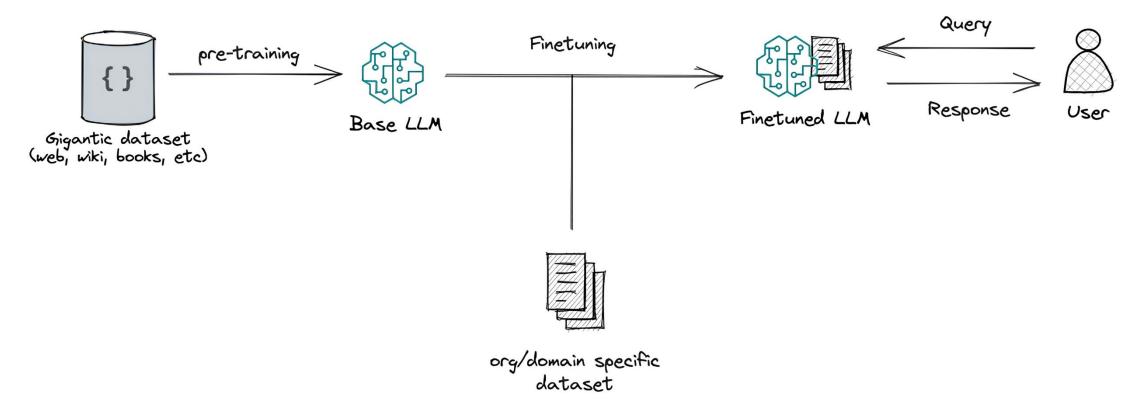
The power consumed by artificial intelligence (AI) tools varies greatly depending on the task. An AI model that provides answers to queries is much less energy-intensive than one that generates images from text prompts, for example. And the data show that even AI models of the same type can vary widely in energy consumption.

^aTests conducted on 20 popular open-source models. Each dot represents one model; ¹1 Watt-hour represents power consumption of 1 W extended over 1 hour.

S. Luccioni et al. Light bulbs have energy ratings—so why can't Al chatbots? Aug/2024

- Question answering: 10x more energy required than a google search.

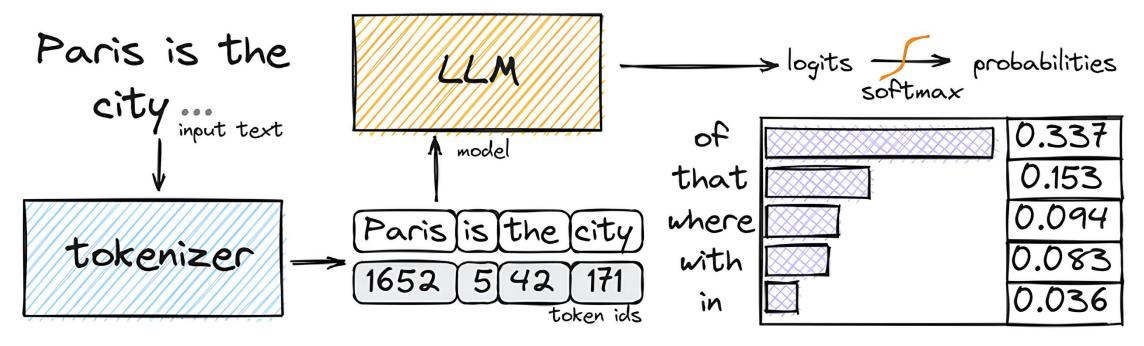
Unil


onature

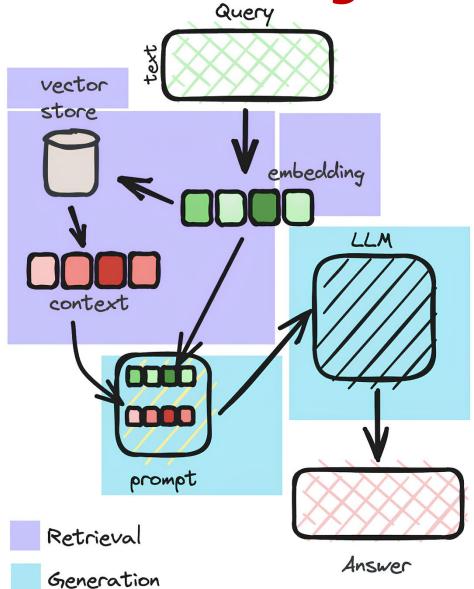
Model	Training end	Chip type	TFLOP/s (max)	Chip count	Wall clock (days)	Total time (years)	Retail (US\$)	MMLU
GPT-3 175B	Apr/2020	V100	130	10,000	15 days	405y	\$9M	43.9
Llama 1 65B	Jan/2023	A100	312	2,048	21 days	118y	\$4M	63.4
Llama 2 70B	Jun/2023	A100	312	2,048	35 days	196y	\$7M	68.0
Titan 200B	Apr/2023	A100	312	13,760	48 days	1,319y	\$45M	70.4
GPT-4 1.7T	Aug/2022	A100	312	25,000	95 days	6,507y	\$224M	86.4
Gemini	Nov/2023	TPUv4	275	57,000	100 days	15,616y	\$440M	90.0
Llama 3 405B	Apr/2024	H100	989	24,576	50 days	3,366y	\$125M	85+
GPT-5	Apr/2024	H100	989	50,000	120 days	16,438y	\$612M	
Grok 2	Jun/2024	H100	989	20,000	50 days	6,571y	\$245M	
Olympus	Aug/2024	H100	989					
Gemini 2	Nov/2024	TPUv6	1,847					
Grok 3	Dec/2024	H100	989	100,000	50 days	<i>32,855y</i>	\$1.2B	
			A	lan D. Th	ompson. N	1ay/2024.	LifeArch	nitect.ai

Table. Model training compute (see working, with sources⁸).

Unil


How large langage models are used

- Training: the LLM is pre-trained on a massive dataset to create a versatile base LLM
- Fine-tuning: the base LLM is specialized with domain-specific data
- Inference: process of generating results from new input


Unil

Decoding and generating text

- Tokenization: converts input text into tokens
- Model processing: tokens become embeddings (representation) and the model predicts the next tokens by generating scores
- Softmax function: converts scores into probabilities to determine the most likely next word

Retrieved-Augmented Generation (global)

- RAG enhances LLM responses by retrieving additional context from databases or the web using a vector store
- The supplementary context is combined with a query to form a prompt that the LLM uses to generate a more accurate answer.

