Graph-based learning in medical imaging and imaging genetics

W3 https://unil.ch/tml

Mil

UNIL | Université de Lausanne

Stats Forum / DBC Comp Bio Seminar 19/05/2022

Agenda

Background and motivation: why graphs? Graph estimation: from images to graphs Graph analysis: from graphs to models and inference Graph imaging genetics: using graphs as endophenotypes

1. Background & motivation

Medical imaging data 2D 3D

Radiograph

1500x2000

4D

BOLD fMRI

64x61x21@0.9 Hz

fNIRS

52x600@10Hz

What types of analyses can we perform?

Image → Image prediction

Image (+X) \rightarrow Clinical prediction

label: abscess

[Shin et al., JMLR, 2016]

Acquisition/Reconstruction/Image processing

- I→I Synthetic contrast generation
- I→I Multi-site data
- S→I Sequence/Reconstruction optimisation (RF pulse design)

Diagnosis

I→I: lesion segmentation, abnormality detection (e.g. Aneurysms)

 $I \rightarrow C$: direct Dx / DDx

 $I \rightarrow C$: patient subtyping

Prognosis

 $I \rightarrow C$: clinical score change, survival

I→C: high-risk/low-risk stratification (care / trial enrichment)

Treatment planning

 $I \rightarrow C$: drug repurposing, responder/non-responder

How do we perform these analyses?

Original image

- Imaging data are quite high-dimensional (in terms of voxels) compared to clinical data
 - Brain structural imaging 4.6M voxels per image
 - Brain functional imaging 82K voxels per time point (image), 37M per session

trained model

$$\mathbf{X} \in \mathbb{R}^{D \times N}; D \leq \hat{I}$$

 $\arg\min \mathcal{L}(f(\mathbf{X};\Theta),Y)$ Θ

handcrafted features

trained model

Use prior anatomical knowledge, signal processing, assumptions, and analysis goals to define a lower-dimensional representation

Graphs in biology and biomedical imaging

Annual Review of Biomedical Data Science Network Analysis as a Grand Unifier in Biomedical Data Science

Patrick McGillivray,¹ Declan Clarke,¹ William Meyerson,² Jing Zhang,^{1,2} Donghoon Lee,² Mengting Gu,^{2,3} Sushant Kumar,¹ Holly Zhou,¹ and Mark Gerstein^{1,2,3}

(brain) graphs: a mesoscale representation for (brain) imaging analysis.

node = brain region
edge = "connection"
(structural or functional)

GRAXL

Workshop on GRaphs in biomedicAl Image anaLysis

GeoMedIA Workshop 2022

Geometric Deep Learning in Medical Image Analysis

Brain graphs and interpretability

Maladaptation

a Diaschisis

Adaptation

d Compensation

[Fornito et al Nat. Rev. Neuro 2015]

Lesioned

Normal

Reduced activity

Increased activity

2. Graph estimation

From spatiotemporal brain imaging to graphs

ML with brain graphs overview [Richiardi et al, IEEE Sig. Proc. Mag. 2013] [Richiardi, EMBC 2015]

valid adjacency matrix A (- diagonal) for a weighted, complete, undirected graph

Inter-regional correlations A problem with applications in many fields

Miscellanea

179

IV. The Elimination of Spurious Correlation due to position in Time or Space.

By "STUDENT."

[Gosset/Student, Biometrika, 1914]

2454

JOURNAL OF CLIMATE

Estimating Spatial Correlations from Spatial-Temporal Meteorological Data

RICHARD F. GUNST

[Gunst, J. Climate, 1995]

Appl. Statist. (1977), 26, No. 2, p. 179

Estimation of Interclass Correlation from Familial Data

By B. ROSNER, A. DONNER and C. H. HENNEKENS

[Rosner et al, J. Royal Stat Soc. C (App. Statist.), 1977]

VOLUME 8

Population and Community Ecology for Insect Management and Conservation, Baumgärtner et al. (eds) © 1998 Balkema, Rotterdam, ISBN 90 5410 930 0

Testing for correlation in the presence of spatial autocorrelation in insect count data

A.M.Liebhold Northeastern Forest Experiment Station, USDA Forest Service, Morgantown, WVa., USA A.A.Sharov Department of Entomology, Virginia Polytechnic Institute and State University Blacksburg. Va., USA

[Liebhold & Sharov, Proc. Int. Congress on Entomology 1996]

Inter-regional correlations **Estimators (selected from 9)**

"correlation of averages"

"average of correlations"

$$\widehat{r}_{jj'}^{CA} = \frac{\widehat{\operatorname{cov}}(\bar{\mathbf{Y}}_{\mathcal{R}_j}, \bar{\mathbf{Y}}_{\mathcal{R}_{j'}})}{\widehat{\sigma}(\bar{\mathbf{Y}}_{\mathcal{R}_j})\widehat{\sigma}(\bar{\mathbf{Y}}_{\mathcal{R}_{j'}})}.$$

local noise: smoothed

size effect: highly dependent on intra-correlations: estimate for

 $r_{jj'}/\sqrt{\bar{\rho}_{\mathcal{R}_j}\bar{\rho}_{\mathcal{R}_{j'}}}$

can degenerate if regions are not positively intra-correlated enough

fMRI: e.g. [Achard et al, J. Neurosci, 2006]

 $\widehat{r}_{jj'}^{\mathrm{AC}} = \frac{1}{N_j N_{j'}} \sum_{i \in \mathcal{R}_j,}$

Desirable properties: 1) handle regions with different number of voxels, 2) handle small intra-correlations, 3) robust to local noise, (4) robust to global noise)

 \mathbf{O}

"local correlation of averages"

$$\sum_{i'\in\mathcal{R}_{j'}}\widehat{\operatorname{cor}}(\mathbf{Y}_i,\mathbf{Y}_{i'}).$$

local noise: not robust

size effect: corrected

$$\widehat{r}_{jj'}^{\ell_{\mathrm{CA}}} = \frac{1}{B} \sum_{b=1}^{B} \widehat{\mathrm{cor}}(\bar{\mathbf{Y}}_{\mathcal{V}_{j}^{(b)}}, \bar{\mathbf{Y}}_{\mathcal{V}_{j'}^{(b)}}).$$

G local noise: smoothed

size effect: corrected

[Achard et al, IEEE SSP, 2011] [Achard, Coeurjolly, Lafaye de Micheaux, Lbath and Richiardi, in prep.]

Inter-regional correlations **Empirical results - face validity**

live vs dead rats rats, N=2, R=22

Rat data [Becq et al, J. Neural Eng., 2020]

[Achard, Coeurjolly, Lafaye de Micheaux, Lbath and Richiardi, in prep.]

Conclusion: LCA has face validity, seems to offer increased repeatability, possibly at the expense of discriminative power

[Achard, Coeurjolly, Lafaye de Micheaux, Lbath and Richiardi, in prep.] ¹Human data <u>https://humanconnectomeproject.org</u>

²[Finn et al., Nature Neuroscience, 2015]

Inter-regional correlations Limitations

Filtering: bandpass filtering

Aggregation: decomposition approaches (ICA, EMD, EEMD...)

Full structure learning: partial correlation, inverse covariance, PC*...

Regularisation: Ledoit-Wolfe, gLasso...

Noise: multiplicative, convolutional...

- Non-linear/causal estimators: Mutual Information, Granger Causality, ...

Brain disconnectomics Atlas-based estimation of white matter tract damage in MS

[Ravano et al., Neuroimage: clinical, 2021]

Heart graphs **Compact representation of cardiac structure and function**

anatomical mapping of AHA segments

[Banus-Cobo et al., in prep.]

building labelled graphs with edge labels and vertex labels

example dilated cardiomyopathy patient graph, end-diastole (top) and end-systole (bottom)

3. Graph analysis

Analysis levels, representations, and approaches

[Damoiseaux et al., Advanced Neuro MR Techniques and applications, vol.4, chap. 21, 2021] Broad overview of brain graph analysis: [De Vico Fallani et al., Phil. Trans. Royal Soc. B, 2014]

¹[Meskaldji et al., NeuroImage, 2015] ²[Meskaldji et al., Stat Papers, 2018]

Network science approaches Focus on subgraphs or topological properties

Principle

Brain graphs have identifiable subgraphs ("modules", "communities") in several modalities

The partition into communities can be used to compare brain graphs between subjects at various scales

Whole-brain: graphwise community structure

"Subnetwork of regions": individual communities

Single region: community membership (not shown)

Application

Goal: discriminate patients with schizophrenia Data: fMRI, 23 HC, 23 SZ, TR=2.3s, rest, 2x3 min (144 points) Vertices: Subparcellated Harvard-Oxford, 278 regions Edge labels: thresholded and binarised absolute wavelet correlation, 0.05-0.1Hz

[Alexander-Bloch et al., Neurolmage, 2012]

Partitions (NMI)

Machine learning approaches

Embeddings

Benchmark of estimators, atlases, classifiers: [Dadi et al., Neuroimage, 2019]

direct, algebraic, tangent space, neural (X2Vec, Feather...)

spectral, topological filters, message passing

Graph embeddings

- Graph embedding maps graphs to points in \mathbb{R}^{D}
 - With G a set of graphs, a graph embedding $\varphi: G \to \mathbb{R}^D$ maps graphs to D-dimensional vectors:
 - $\varphi(q) = (x_1 \ldots x_D)^T$
- For brain graphs, we are generally interested in preserving edge label information
 - Vertex labels can be dropped because of the correspondence between atlas regions
- Once we have vectors we can use any ML algorithm we want

Direct embedding and behaviour/phenotype prediction Principle Application

Use the upper-triangular part of A^{1,2,3}

 $(|V_i| - 1, |V_i|)$ $(|V_i|, |V_i|)$ $\mathbf{a}_i \in \mathbb{R}^{\binom{|V_i|}{2} imes 1}$ $\mathbf{A}_i \in \mathbb{R}^{|V_i| imes |V_i|}$

"Cursed" representation and loss of posdefness, but generally a competitive baseline (at least with ~100 vertices, fMRI)

Links Mantel test statistic with Linear kernel SVM same notion of similarity

3 [Richiardi et al., ISBI 2010] [Richiardi et al., ICPR 2010] 1 [Wang et al., MICCAI, 2006] 2 [Craddock et al., MRM, 2009] [Richiardi et al., Neurolmage, 2011+12]

Task: Dx, 30 depressive vs 30 matched HC Data: task fMRI, 137 regions Classifier: L1-SVM on direct embedding Results: 85% acc

[Rosa et al., Neuroimage, 2015]

Graph convolutional networks and phenotype prediction

Principle¹

Approximate spectral filtering on graphs²

¹[Kipf and Welling, ICLR, 2017]

²[Cvetkovic et al., Spectra of Graphs, AP, 1980] [Luo et al., Pattern Recognition, 2003] [Deferrard et al., NeurIPS, 2016]

Application

Task: Dx, 75 ASD depressive vs 43 matched HC Data: task fMRI, 148 regions Classifier: GNN with edge and node attributes Results: 76% acc

[Li et al., MICCAI, 2019]

4. Graph imaging genetics

Genetics of intrinsic brain activity

In humans and lower mammals, spatially consistent, synchronised, intrinsic activity forming "functional networks" is observed reproducibly across the lifespan

What are the genetic correlates of this consistency?

BOLD fMRI, ICA(K=20), N=1093, C=24

Functional networks are heritable

Connectivity within the DMN is heritable³ (0.4, p=0.005)

BOLD fMRI, ICA (K=17), N=333

¹[den Braber et al., NeuroImage, 2013] ²[Chiang et al., J. Neurosci, 2009]

Like other neuroimaging phenotypes^{1,2}, some aspects of FNs are heritable

Some topological metrics of FNs are heritable⁴ (0.6 for CE)

BOLD fMRI, R=1041, N=48

28 ³[Glahn et al., PNAS 2010]⁴[Fornito et al., J. Neurosci, 2011]

Dynamics of functional networks are also heritable

1 × K vector

[Jun et al., NeuroImage, 2022]

Transition Probability Probability to transition

 $K \times K$ matrix

N=1003 (aged 22–37, 534 females): 120 monozygotic (MZ) twin pairs 65 sex-matched dizygotic (DZ) twin pairs 96 sex-matched non-twin (NT) sibling pairs 62 pairs of sex-matched unrelated individuals.

(*h*²=0.39, 95% CI= [.24,.54] for FO *h*²=0.43, 95% CI=[.29,.57] for TP)

SNPs modulate functional networks Genetic risk factors for many diseases affect FNs¹

ZNF804 / rs1344706 (SZ risk)²

BOLD fMRI, seed corr, N=115 HC

¹[Tost et al., Neuroimage, 2012] ²[Esslinger et al., Science, 2009]

CNTNAP2 / rs2710102 (ASD risk)³

nonrisk>risk

risk>nonrisk

BOLD fMRI, seed corr, N=71 (16+39 HC, 16 ASD)

30 ³[Scott-Van Zeeland et al., Science Transl. Med., 2010]

Gene expression relates to functional networks

Different (cortical) FNs¹ have different gene expression²

parieto-temporofrontal visual-sensorimotorauditory

^I[Mesmoudi et al-, PLoS one, 2013] (dual rings)

N=1 (394 samples), G=938

²[Cioli et al., PLoS one, 2014]

Functional networks genetics

fMRI data (ICA-defined networks)

N=15, 18-29 y.o. in vivo

[Richiardi, Altmann et al., Science, 2015]

Transcriptional similarity within functional networks

$$S_g = \frac{\sum_1}{\sum_{1+0} - \sum_1}$$

1 1 1 0 0

Regions grouped as belonging to FNs (1) or rest of brain (0)

> Holds with distance-corrected data, distance-preserving permutation

Genes driving the test

list overlap test + stability selection results

ADAM23 ANKRD6 ATP6V1C2 BAIAP3 AMDHD1 AS COL5A2 CYP2 C3orf55 CARTPT CCDC39 CD70 GABRA5 GALF CDK1 CNTN6 CRYBA2 CTXN3 GPX3 HPCAL1 CXXC11 DMRT3 EPN3 FEZF1 FZD7 GAL GLRA3 GNA14 GNGT2 GRP NKAI NEXN ONECUT3 HSD11B1 KANK4 KCNA1 KCNA3 0 **PVALB** KCNA5 KCNC1 KCTD15 KRT1 KRT31 TMEM52 TSPA LAIR2 LINC00238 LMOD3 LRRC38 LYPLA2 MGP MYH7 MYLK3 NEB ALOX12 CALB ble) CDR2L CPLX1 NECAB2 NEFH NEUROD6 NGFR NOL4 NOV NRP1 ONECUT2 PCP4 GOLT1A GPR2 PIRT PNMT PRR15 PRSS35 PTGS1 IL33 IQCJ KL ost RBP4 RBPMS2 RHOBTB2 RSPH9 LINC00617 M Ē SCARA5 SCN1B SCN4B SEMA7A NUPR1L P splits SHD SHISA9 SIX3-AS1 SLC16A6 SEMA3C SH3 SLC22A10 SLN SV2C SYT10 SYT2 SLC20A2 SL TDO2 TGFBI TINCR TLX2 TNNT2 WISP1 WISP2 = ◄ TRIM29 TSHZ3

A few well-known genes like SNAP25 or GABRA5 Many potassium channels (KCN*) Significant enrichment for voltage-gated ion channels

GR2 CD163L1	
2C18 FAM163A	
GPR26 GPR88	
IL13RA2 ISCU	
N4 NPBWR2	its
R51E2 PLCH1	ğ
P25 SPHKAP	99
N8 ZCCHC18	Ω.
1 CCBE1 CD6	
ENPP6 GMPR	
0 HOXD1 HPCA	
K1 KLK8 LGR6	
S4A8 MYBPC1	
YDC1 RTP1	
RF2 SLC16A5	its
C39A12 SOST	lds
WNT4	9
	4

validated (n=259) in association study using SNPs of these genes with in-vivo connectivity as quantitative phenotype.

Brain network imaging genetics for stratification

[Rudie et al., Neuron, 2012]

MET genotype: CC lowers PCC↔MPFC conn

Wrap-up and take-home points

'inter-lingua' between different modalities, organs, and biological scales

yielding more desirable estimators

particularly in scalable and predictive ML approaches

heritable and sensitive endophenotypes for genetic analyses

- Graphs offer an interpretable 'meso-scale' for medical image analysis, and a useful
- Graph estimation from medical imaging data can be improved from the status quo,
- There has been tremendous progress over the past 10 years in graph analysis,
- Graphs obtained from medical imaging, and their properties, can be used as a

Translational Machine Learning Lab

back Tommaso Di Noto**, Antoine Madrona, Xavier Sieber*** Dr. Jonathan Patiño-Lopez, Jonas Richiardi front Veronica Ravano*, Dr Elda Fischi-Gomez, Costa Georgantas, Dr Jaume Banus Cobo, (Adrien Jammot)

co-supervisions: *Siemens Healthcare, **UNIL/MIAL, **CHUV/Connectomics Lab, ***CHUV/CVMR

Collaborators **INRIA/CNRS/UGA**

DrSc. Sophie Achard Prof. JF Coeurjolly Ms Hana Lbath

UNSW

Prof. P. Lafaye de Micheaux **BYU/UCSB**

Prof. A. Petersen

UCL

DrSc Andre Altmann Stanford

Prof. M. Greicius

CHUV/UNIL

DrSc Ruud van Heeswijk Prof. Roger Hullin **HUG/UNIGE** Dr Philippe Meyer

Schweizerische Eidgenossenschaft Confédération suisse Confederazione Svizzera Confederaziun svizra

Swiss Confederation

Innosuisse – Swiss Innovation Agency

