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Introduction
01

Introduce extreme events and the importance
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• Resources planning is a central concern in public health and it involves 

anticipating the possibility of rare or extreme events occurring in the foreseeable 
future.

Ø community epidemics
Ø significant heatwaves
Ø extreme air pollution periods
Ø unusually large flooding events
Ø accidental toxic exposures
Ø tornados outbreaks
Ø financial crises
Ø …
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• Extreme Value Theory (EVT) is a branch of statistics concerned with the 

extreme values of probability distributions. It was developed by Emil Julius 
Gumbel in 1920.

Ø Hydrology: predict floods
Ø Oceanography: study rogue waves
Ø Epidemiology: identify emerging diseases
Ø Demography: predict the probability distribution of the maximum age that humans 

will be able to achieve
Ø Insurance: predict major disasters
Ø Finance: predict financial crisis
Ø Climatology: exceedances of heatwave records
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• Objective of EVT: is to evaluate the likelihood of events exceeding previously

recorded extremes based on a series of observations.

• Advantage of using EVT is that: it is possible to predict the occurrence of a still
unobserved event which is more extreme than those that have been observed up to
now.

• In this presentation: we showcase the application of EVT in a public health
context. For this, we will demonstrate its utilization in predicting the occurrence of
a future extreme pneumonia and influenza mortality episode as large or even
larger than what has been observed in the data.
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Source: Thomas et al. Applications of Extreme Value Theory in Public Health. PLoS ONE 2016; 11(7):e0159312.
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Source: Chiu et al. Mortality and morbidity peaks modeling: an extreme value theory approach. Statistical Methods in 
Medical Research 2018; 27: 1498-1512.

Another public health data example is the daily number of hospitalizations (due 
to cardiovascular diseases) in Montreal
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Why do we need special statistical methods to study extremes?
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l When working with complete datasets and employing traditional statistical

techniques, the primary focus is often on average occurrences.

Some consequences

Missing 
Specific 
Events

Dealing 
with 

Extremes

Frequency 
of 

Peaks
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In summary, while average-based analyses are valuable for understanding typical
patterns, they may not capture the full picture when it comes to health outcome peaks.
Researchers should explore statistical methods that specifically address extreme events
and provide a more comprehensive understanding of healthcare dynamics.

Why do we need special statistical methods to study extremes?
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Extreme Value Theory
02

Introduce two methods in extreme value theory
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l Extreme events are small

probability events, and when
they occur, these small
probability events can cause
significant impact. Extreme
value theory studies the
behavior of the distribution
function in the tail.
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l When using extreme value theory in statistics there are, basically, two different

approaches:

• The first is called the block-maxima (BM) method

• The second is the peaks-over-threshold (POT) method



• The POT method does not consider
block maxima. Instead, all observations
larger than a given threshold (typically
a specific quantile) are selected for the
analysis.

• It can be shown that their limiting
distribution is the Generalized Pareto
distribution (GPD).

• Raw data are divided into blocks and
the maximum observation is selected in
each block, thereby forming a series of
peaks to be analyzed.

• It can be shown that their limiting
distribution is the Generalized
Extreme Value (GEV) distributioin.

• Each block has the same size and the
number of blocks determines the
number of peaks.

15
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BM method POT method
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l Example: daily number of

hospitalizations in Montreal

• This data set supplied from
January 1996 to March 2007. This
leads to a total of 4077 days of
hospitalizations.

• The BM method uses a block size 
of 180 days while the POT method 
uses the 90% quantile (the peaks 
are in red):
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1. The Gumbel Distribution: (representing distributions with lighter tails) 

 if  

2. The Fréchet Distribution: (representing distributions with heavy tails) 

 

3. The Weibull Distribution: (representing distributions with finite tails) 
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Weibull distribution: 
has a finite tail
Uniform distribution; 
Beta distribution

Gumbel distribution: 
has a light tail
Normal distribution; 
Log-normal distribution; 
Exponential distribution

Frechet distribution: 
has a heavy tail
t-distribution; Cauchy 
distribution
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How to set blocks?

l The choice of block size is critical in the BM method. It amounts
to a trade-off between bias and variance.

Your Text 
here

A too-small 
number of 

blocks 
A too-short 
peak series

Lead to a high 
variance

A too-large 
number of 

blocks 
A too-long 
peak series

Lead to a high 
bias
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Return Level

From the fitted distribution, one can estimate the probability of the
occurrence of an extreme quantile (called “return level”) over a certain
return period T. Return level is one of the main outputs of Extreme
Value Theory. More precisely, the return level is defined as the value that
is expected to be equaled or exceeded on average once every interval of
time T (with a probability of 1/T).
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Return Level

Once the parameters of GEV distribution have been estimated, the return level  
associated with return period T can be computed (by inverting the GEV distribution): 
 

 

 

pz

{1 [ ln(1 )] }    for 0

ln[ ln(1 )]    for 0

pz p

p

xsµ x
x

µ s x

-= - - - - ¹

= - - - =



22

!"! #$%&'%()*+,%-*.$-%/$+01&234#5&6%.$+1

Let  be a sequence of independent and identically distributed random 
variables, having marginal distribution function F.  
 

 

 
If the parent distribution F were known, the distribution of threshold exceedances would 
also be known. 
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l Generalized Pareto distribution (GPD)

Let X be the raw data variable, the exceedances of X over the threshold u are then 
expressed as Y = X - u.The GPD distribution function is defined by: 
 

 

 

on the interval  where  is the scale parameter and 

 is the shape parameter. 
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• Heavy tail: the heavier tail means 
the probability of observing 
extremely large values is higher 
compared to other distributions.

• The tail of the distribution does not 
have an upper bound, which makes 
it suitable for modeling process 
where extremely large values can be 
observed without a theoretical upper 
limit .

• Used to model financial losses from 
rare, catastrophic events where 
losses can be exceptionally high, 
such as natural disasters.
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• Exponential Tail: It represents a 
"lighter-tailed" distribution. 

• It is useful for modeling decay 
processes.

• It can be applied in modeling the 
inter-arrival times in queues or the 
reliability of mechanical systems 
where failures follow an exponential 
pattern.

!"!#$%&#'&()*+,&-*.%-&/%+01#234$5#6&.%+1#

25



• Short tail: in this scenario, the 
distribution has an upper limit. 

• This means the distribution is 
bounded above, which is useful for 
modeling quantities that have a 
natural upper limit. 

• It is suitable for modeling 
phenomena like maximum capacity 
scenarios where values cannot 
exceed a certain limit.

!"!#$%&#'&()*+,&-*.%-&/%+01#234$5#6&.%+1#
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How to set threshold?

l The choice of threshold is critical in the POT method. It amounts
to a trade-off between bias and variance.

Your Text 
here

A too low 
threshold 

Select events 
that may not 

be peaks

Lead to a high 
bias

A too high 
threshold

Few excesses 
for estimating 

the model

Lead to a high 
variance

!"!#$%&#'&()*+,&-*.%-&/%+01#234$5#6&.%+1#



28

!"! #$%&'%()*+,%-*.$-%/$+01&234#5&6%.$+1

Return Level
Suppose that a Generalized Pareto distribution is a suitable distribution for modeling 
exceedances over the threshold u by variable X : 

 

It follows that 

 

where . 
Hence, the level  that is exceeded on average once every m observations is the solution 
of 
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Application on Public health
03

Apply two methods on Pneumonia and Influenza (P&I) mortality data
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l Pneumonia and Influenza (P&I)
mortality refers to deaths caused by
pneumonia and influenza viruses.

l Seasonal influenza occurs annually
and varies in severity

l Understanding and predicting P&I
mortality rate peaks is crucial for
planning health services and
interventions.
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• We used the weekly cumulative number of P&I deaths in France from July 1979
to June 2011 (Thomas et al. Applications of Extreme Value Theory in Public
Health. PLoS ONE 2016; 11(7):e0159312).
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• Here is look at the data set:

observation flu_season week cPI 
1 1980 1979-07-01 1.35 
2 1980 1979-07-08 1.34 
3 1980 1979-07-15 1.41 
4 1980 1979-07-22 1.34 
5 1980 1979-07-29 1.27 
... ... ... ... 
1659 2011 2011-04-10 2.37 
1660 2011 2011-04-17 2.30 
1661 2011 2011-04-24 2.23 
1662 2011 2011-05-01 2.23 
1663 2011 2011-05-08 2.13 
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• The yearly maxima within each respiratory year (that is, from July to June to encompass

annual influenza epidemics) have been extracted, generating a series of 32 annual maxima:
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In the classical approach of EVT, several assumptions need to be validated before
proceeding to the fitting of the EVD to the peak series:

• Independence: The data should be independent of each other.

• Stationarity: There should be no trend.

• Homogeneity: Observations must come from the same distribution.
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In the classical approach of EVT, several assumptions need to be validated before
proceeding to the fitting of the EVD to the peak series:

• Independence:

• Stationarity:

• Homogeneity:

Ljung-Box autocorrelation test (H0: The data are independently 
distributed)

Mann-Kendall test (H0: Data have no trend)

Kolmogorov-Smirnov Test (H0: The data have the same distribution)



36

• Independence:

• Stationarity:

• Homogeneity:

The p-value = 0.720 of Ljung- Box test shows that the assumption
of independence is not rejected (i.e. there is no autocorrelation)

The Mann-Kendall test (p-value = 0.446) shows that the assumption 
of no trend is not rejected

The Kolmogorov-Smirnov test (p-value = 0.952) shows that the 
homogeneity assumption is not rejected.

?"?"-#F0A*4&A#(C#&60#&0A&A#
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Maximum-likelihood estimation of the model parameters resulted in a location parameter 

 = 5.33, 95%CI (4.51;6.14), scale parameter  = 1.97, 95%CI (1.35;2.59), and shape 
parameter  = 0.004, 95%CI (-0.36;0.37). 
µ s

x
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Goodness-of-fit

Statistical tests

Anderson-Darling 
(AD) test

Kolmogorov-
Smirnov (KS) test

Graphical 
approach QQplot
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• We obtained p-value = 0.965 for the Anderson-Darling test and p-value = 0.974

for the Kolmogorov-Smirnov test, and inspection of the QQplot:
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l Based on the estimated model parameters, the Return Level plot can be computed:
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• This plot suggests that a cPI
mortality rate of at least 12 
(95%CI[8; 16]) deaths per 
100’000 (the return level) is 
expected to be exceeded on 
average once every 30 years (the 
return period). 

• Another way to interpret the plot 
is to say that there is 
approximately a 3% chance 
(1/30) each year that the cPI
mortality rate will exceed 12 
deaths per 100’000.
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Several thresholds 0.75, 0.8, 0.85, 0.9, 0.95, 0.975, and 0.99 have been investigated.

For example, using the 90% quantile as a threshold, one obtains:
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Results of the independence, stationarity, and homogeneity tests are provided in the table 
below for the various thresholds considered: 
 

GPD Assumption Test Estimated 
Parameter 

Goodness of 
Fit 

Threshold 
(%) 

n Box-Ljung 
test 

M-K 
test 

K-S 
test   KS AD 

0.75 416 0 0.02 0.65 0.04 1.66 0 0 
0.8 332 0 0.26 0.51 -0.06 1.92 0 0 
0.85 250 0 0.49 0.20 -0.21 2.34 0 0 
0.9 166 0 0.89 0.13 -0.36 2.72 0 0 
0.95 84 0 0.26 0.11 -0.54 2.76 0 0 
0.975 42 0 0.95 0.04 -0.60 2.00 0 0 
0.99 17 0.07 0.68 0.28 -0.60 1.11 0 0 
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• Actually, peaks tend to occur in clusters, especially in the POT method. This 

compromises the independence assumption.
• After decluster:
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• The return level plot looks almost the same as that from BM method:
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Expansion
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Links to my master thesis
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• In this presentation, we considered the simple univariate setting. In my 
master thesis, I explored the application of the multivariate version of the 
Extreme Value Theory in the context of structural models (only the peak-
over-threshold method).
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Conclusion
05

Comments on two methods and extreme value theory
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1.Easy to ignore 
some valuable 
data.

2.The trend is 
consequently 
kept in the peak 
series. 

Block 
Maxima 
Method 1.May miss 

some 
information 
caused by time.

2.Peaks tend to 
occur in 
clusters.

Peak Over 
Threshold 
Method
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• Extreme value theory does not make any assumptions 
about the distribution of the overall data

• Extreme value theory focuses on the tails of the distribution 
and thus provides a more accurate measure of the loss of 
extreme events.

Extreme 
Value 

Theory
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Merci pour votre attention J

Thank you for your listening


